Language :
 SWEWE Member :Login |Registration
 Search
 Encyclopedia community |Encyclopedia Answers |Submit question |Vocabulary Knowledge |Upload knowledge
 questions :Introduction of normal distribution
 Visitor (157.36.*.*)Category :[Technology][Other]
 I have to answer [Visitor (18.234.*.*) | Login ]
 Picture : Type :[|jpg|gif|jpeg|png|] Byte :[＜1000KB] Language : 中文(简体) 中文(繁體) English 日本 한국어 Deutsch Française Ελληνικά Россию svenska Nederlandse Polska Український dansk български Italiano Icelandic român suomen kieli Galicia Türk Pilipino Català český hrvatski Latvijas Lietuvos македонски norsk språk Српски језик slovenský jazyk slovenščina Magyar nyelv فارسی Português ไทย Español Bahasa Indonesia Ngôn ngữ Việt Nam العربية Gaeilge shqiptar eesti Беларускія Die Boole-taal (Afrikaans) Malti Melayu lugha ya Kiswahili Cymraeg עברית שפה ייִדיש हिन्दी esperanto bosanski اردو زبان Azərbaycan ქართული Kreyòl ayisyen Euskal հայերեն ગુજરાતી ಕನ್ನಡ latin ພາສາລາວ বাংলা ভাষা తెలుగు தமிழ் மொழி ខ្មែរ | Check code : All answers [ 1 ]
 [Member (365WT)]answers [Chinese ] Time :2019-04-23 Normal distribution: is a probability distribution. The normal distribution is a distribution of continuous random variables with two parameters μ and σ^2, the first parameter μ is the mean of the random variables following the normal distribution, and the second parameter σ^2 is the variance of the random variable. Therefore, the normal distribution is denoted as N(μ, σ^2). The probability law of random variables following normal distribution is that the probability of taking the value of μ neighbor is large, and the probability of taking the value farther away from μ is smaller; the smaller the σ is, the more concentrated the distribution is near μ, the larger the σ is, the more the distribution is. dispersion.The density function of a normal distribution is characterized by a maximum value at μ for μ symmetry, a value of 0 at positive (negative) infinity, and an inflection point at μ ± σ. Its shape is low on both sides of the middle and the image is a bell curve above the x-axis. When μ=0, σ^2 =1, it is called the standard normal distribution and is denoted as N(0,1). When a μ-dimensional random vector has a similar probability law, the random vector is said to follow a multi-dimensional normal distribution. The multivariate normal distribution has good properties. For example, the edge distribution of the multivariate normal distribution is still a normal distribution, and the random vector obtained by any linear transformation is still a multidimensional normal distribution, especially its linear combination is a unitary normal. distributed.

 Search 