Language :
SWEWE Member :Login |Registration
Encyclopedia community |Encyclopedia Answers |Submit question |Vocabulary Knowledge |Upload knowledge
Previous 1 Next Select Pages

Martian atmosphere

On Mars, No One Can Hear You Scream

By Kim Krieger

ScienceNOW Daily News

12 June 2006Sound dies quickly in the cold, thin air of Mars. Researchers have modeled a sound wave traveling through the Martian atmosphere and report that it doesn't go far--even a lawn mower's roar dies after a hundred meters or so. The model presents an unusually detailed picture of how sound travels in an alien atmosphere and hints at what it would take to communicate on the Red Planet.

The shriek of a baby, an ambulance's siren, or a violin sonata are all essentially the same thing: waves of pressure traveling through the air. Sound can also travel through water, or a solid like the ground, but because molecules must bump into each other to propagate the pressure wave, the denser the medium the better. Hoofbeats or footsteps travel farther through the ground than through the air, for example, because the molecules in air have to travel further to bump into one another than those in soil, thus losing energy more quickly.

The Martian atmosphere is mostly carbon dioxide and only 0.7% as dense as Earth's is, so sound should fade more quickly. But the details of how sound waves travel in the Martian atmosphere were unclear and could be important to future Mars missions.

Now, a computer model has given a molecule-by-molecule map of how sound moves on Mars. Graduate student Amanda Hanford and physicist Lyle Long of Pennsylvania State University in State College presented the model last week at a meeting of the Acoustical Society of America meeting in Providence, Rhode Island. The model is unusual in its molecular approach; most acoustical models of sound treat the medium it travels through as a continuous block with average properties. Such models are fine for dense atmospheres like Earth's, but treating the air like a loose bunch of freewheeling molecules is more realistic for Mars' rarefied atmosphere, say the researchers.

Hanford and Long first set up a virtual "box" filled with about 10 million carbon dioxide molecules floating about randomly, at the same density as the Martian atmosphere. A sound wave then appeared on one side of the box, and the model calculated its progress across to the other side, computing nanosecond by nanosecond exactly how the carbon dioxide molecules bumped and moved. The results show that a noise that would travel several kilometers on Earth would die after a few tens of meters on Mars. Quieter sounds would travel far shorter distances, making eavesdropping on a quiet conversation nearly impossible.

Henry Bass, a physicist at the University of Mississippi in Oxford, notes that if people ever go to Mars and want to communicate audibly, they'll need to design devices that can work with the lower frequencies transmitted by the Martian atmosphere.

Category :[Natural][Universe Astronomy]
Upload Member :READEN(readyw)

Previous 1 Next Select Pages
User Review
No comments yet
I want to comment [Visitor (44.197.*.*) | Login ]

Language :
| Check code :


版权申明 | 隐私权政策 | Copyright @2018 World encyclopedic knowledge